Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.627
Filtrar
1.
Ecotoxicol Environ Saf ; 267: 115619, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890246

RESUMO

Mercury (Hg) is a very toxic decomposition-resistant metal that can cause plant toxicity through bioaccumulation and oxidative damage. Biochar, derived from organic waste and agricultural garbage, is an on-site modification technique that can improve soil health in heavy metals-polluted regions. The present experiment was designed to explore the role of apple biochar in the management of mercury toxicity in corn (Zea mays cv. 'PL535'). Different levels of biochar derived from apple wood (0%, 2.5%, 5.0%, and 7.5% w/w) along with different Hg concentrations (0, 20, 40, and 60 mg/L) were used in the experiment that was based on a completely randomized design. Based on the results, HgCl2 at all rates reduced root and shoot dry weight and length, tolerance index, chlorophyll a and b content, the Hill reaction, and dissolved proteins and increased shoot and root Hg content (up to 72.57 and 717.56 times, respectively), cell death (up to 58.36%), MDA level (up to 47.82%), H2O2 (up to 66.33%), dissolved sugars, and proline. The results regarding enzymatic and non-enzymatic antioxidants revealed increases in total phenol and flavonoids content (up to 71.27% and 86.71%, respectively), DPPH free radical scavenging percentage, and catalase (CAT) and ascorbate peroxidase (APX) activity (up to 185.93% and 176.87%, respectively), in corn leaves with the increase in the Hg rate applied to the culture medium. The application of biochar to the substrate of the Hg-treated corns reduced Hg bioavailability, thereby reducing Hg accumulation in the roots (up to 76.88%) and shoots (up to 71.79%). It also reduced the adverse effect of Hg on the plants by increasing their shoot and root dry weight, photosynthesizing pigments, Hill reaction, and APX activity and reducing cell death, H2O2 content, and MDA content. The results reflected the capability of apple wood biochar at all rates in reducing Hg bioavailability and increasing Hg fixation in Hg-polluted soils. However, it was most effective at the rate of 7.5%.


Assuntos
Malus , Mercúrio , Zea mays , Antioxidantes , Clorofila A , Peróxido de Hidrogênio , Mercúrio/toxicidade , Madeira , Zea mays/efeitos dos fármacos
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902048

RESUMO

Maize is a main food and feed crop with great production potential and high economic benefits. Improving its photosynthesis efficiency is crucial for increasing yield. Maize photosynthesis occurs mainly through the C4 pathway, and NADP-ME (NADP-malic enzyme) is a key enzyme in the photosynthetic carbon assimilation pathway of C4 plants. ZmC4-NADP-ME catalyzes the release of CO2 from oxaloacetate into the Calvin cycle in the maize bundle sheath. Brassinosteroid (BL) can improve photosynthesis; however, its molecular mechanism of action remains unclear. In this study, transcriptome sequencing of maize seedlings treated with epi-brassinolide (EBL) showed that differentially expressed genes (DEGs) were significantly enriched in photosynthetic antenna proteins, porphyrin and chlorophyll metabolism, and photosynthesis pathways. The DEGs of C4-NADP-ME and pyruvate phosphate dikinase in the C4 pathway were significantly enriched in EBL treatment. Co-expression analysis showed that the transcription level of ZmNF-YC2 and ZmbHLH157 transcription factors was increased under EBL treatment and moderately positively correlated with ZmC4-NADP-ME. Transient overexpression of protoplasts revealed that ZmNF-YC2 and ZmbHLH157 activate C4-NADP-ME promoters. Further experiments showed ZmNF-YC2 and ZmbHLH157 transcription factor binding sites on the -1616 bp and -1118 bp ZmC4 NADP-ME promoter. ZmNF-YC2 and ZmbHLH157 were screened as candidate transcription factors mediating brassinosteroid hormone regulation of the ZmC4 NADP-ME gene. The results provide a theoretical basis for improving maize yield using BR hormones.


Assuntos
Brassinosteroides , Fatores de Transcrição , Zea mays , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Malato Desidrogenase/metabolismo , NADP/metabolismo , Fotossíntese/genética , Fatores de Transcrição/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/metabolismo
3.
PLoS One ; 17(2): e0262652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176054

RESUMO

Present investigation was conducted at the Research Farm of Indian Institute of Soil Science, Bhopal during 2017-18 and 2018-19 to study the performance of chickpea crop under various nutrient management modules in a Vertisol. The field experiment was set up in a randomized block design with three replications of twelve different INM modules. During the rabi seasons of 2017-18 and 2018-19, the chickpea (cv. JG-315) was grown with a set of treatments. The crop's performance was evaluated in terms of growth, yield (grain and straw), nutritional content, and nutrient uptake under different treatments. At crop harvest, the physic-chemical characteristics of the soil were also evaluated. Finally, the relationship between the numerous examined parameters was determined. The results showed that integrated nutrient management modules had a positive impact on chickpea crop performance and productivity when compared to using only inorganic fertilizer. The INM modules dramatically increased soil organic carbon and improved soil health in terms of physical and chemical qualities, in addition to higher crop performance. Among the various modules, (1) application of 75% STCR dose + FYM @ 5t ha-1to maize followed by 100% P only to chickpea and (2) application of FYM @ 20t ha-1to maize followed by FYM @ 5t ha-1 to chickpea increased the productivity and nutrient uptake in chickpea, improved soil physico-chemical properties and reflected as viable technique in improving soil nutrient availability on sustainable basis.


Assuntos
Carbono/química , Cicer/crescimento & desenvolvimento , Fertilizantes/análise , Nutrientes/análise , Estações do Ano , Solo/química , Zea mays/crescimento & desenvolvimento , Cicer/efeitos dos fármacos , Índia , Nutrientes/administração & dosagem , Zea mays/efeitos dos fármacos
4.
J Nanobiotechnology ; 20(1): 15, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983547

RESUMO

BACKGROUND: Various environmental factors are capable of oxidative stress to result in limiting plant development and agricultural production. Fullerene-based carbon nanomaterials can enable radical scavenging and positively regulate plant growth. Even so, to date, our knowledge about the mechanism of fullerene-based carbon nanomaterials on plant growth and response to oxidative stress is still unclear. RESULTS: 20 or 50 mg/L quaternary ammonium iminofullerenes (IFQA) rescued the reduction in root lengths and root-hair densities and lengths of Arabidopsis and maize induced by accumulation of endogenous hydrogen peroxide (H2O2) under 3-amino-1,2,4-triazole or exogenous H2O2 treatment, as well as the root active absorption area and root activity under exogenous H2O2 treatment. Meanwhile, the downregulated contents of ascorbate acid (ASA) and glutathione (GSH) and the upregulated contents of dehydroascorbic acid (DHA), oxidized glutathione (GSSG), malondialdehyde (MDA), and H2O2 indicated that the exogenous H2O2 treatment induced oxidative stress of maize. Nonetheless, application of IFQA can increase the ratios of ASA/DHA and GSH/GSSG, as well as the activities of glutathione reductase, and ascorbate peroxidase, and decrease the contents of H2O2 and MDA. Moreover, the root lengths were inhibited by buthionine sulfoximine, a specific inhibitor of GSH biosynthesis, and subsequently rescued after addition of IFQA. The results suggested that IFQA could alleviate exogenous-H2O2-induced oxidative stress on maize by regulating the ASA-GSH cycle. Furthermore, IFQA reduced the excess accumulation of ROS in root hairs, as well as the NADPH oxidase activity under H2O2 treatment. The transcript levels of genes affecting ROS-mediated root-hair development, such as RBOH B, RBOH C, PFT1, and PRX59, were significantly induced by H2O2 treatment and then decreased after addition of IFQA. CONCLUSION: The positive effect of fullerene-based carbon nanomaterials on maize-root-hair growth under the induced oxidative stress was discovered. Application IFQA can ameliorate oxidative stress to promote maize-root growth through decreasing NADPH-oxidase activity, improving the scavenging of ROS by ASA-GSH cycle, and regulating the expressions of genes affecting maize-root-hair development. It will enrich more understanding the actual mechanism of fullerene-based nanoelicitors responsible for plant growth promotion and protection from oxidative stress.


Assuntos
Fulerenos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Compostos de Amônio Quaternário , Zea mays/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Fulerenos/química , Fulerenos/farmacologia , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
BMC Plant Biol ; 22(1): 11, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979944

RESUMO

BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.


Assuntos
Secas , Fotossíntese/efeitos dos fármacos , Ácido Poliglutâmico/análogos & derivados , Rizosfera , Microbiologia do Solo , Zea mays/fisiologia , Microbiota/efeitos dos fármacos , Ácido Poliglutâmico/farmacologia , Zea mays/efeitos dos fármacos
6.
Int J Biol Macromol ; 195: 264-273, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920054

RESUMO

This study aimed to develop a composite bilayer film based on corn starch (CS)/polylactic acid (PLA). The film had a hydrophobic outer layer and an absorbent inner layer. A natural bioactive substance was incorporated into the inner layer, namely, eucalyptus essential oil microcapsules (EOM). This allowed most of the bioactive substance to be released inside the storage environment. The effects of different amounts of EOM on the physical, mechanical, antioxidant, and antimicrobial properties of the films were investigated. Based on the results of scanning electron microscopy (SEM), the addition of 10-15 mL/100 mL of EOM could be uniformly distributed in the film. The addition of less than 15 mL/100 mL of EOM to the film improved its tensile strength, barrier properties, and elongation at break. The addition of too much EOM led to cracks in the film. The addition of EOM also greatly improved the antioxidant and antibacterial properties of the bilayer film. The best performance was obtained when the added amount was 15 mL/100 mL. Films with the best overall properties were used for preserving Agaricus bisporus. In preservation experiments, this film inhibited the respiration rate of A. bisporus, slowed down the consumption of organic matter, and maintained its moisture content. Compared with other cling films, the shelf life of A. bisporus was greatly extended.


Assuntos
Óleo de Eucalipto/química , Poliésteres/química , Amido/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Eucalyptus , Óleo de Eucalipto/farmacologia , Embalagem de Alimentos/métodos , Óleos Voláteis/química , Folhas de Planta/efeitos dos fármacos , Poliésteres/farmacologia , Amido/farmacologia , Resistência à Tração , Zea mays/efeitos dos fármacos
7.
Environ Pollut ; 293: 118500, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785284

RESUMO

One-third of maize cultivation in Turkey has been performed in nutrient-rich soils of the coastal agricultural lands of the Black Sea Region, which is among the country's granaries. However, the yield of this chief crop is affected by Cu toxicity due to a decades-long abandoned opencast Cu-mine. As part of the modern agenda, against this problem, we valorized one of the region's signature plant waste by synthesizing a tea-derived biochar (BC) and evaluated for remediation effect on maize Cu tolerance. Among other rates (0%, 0.4%, 0.8%, 1.6%), maximum Cu absorption (168.27 mg kg-1) was found in the 5%BC in in-vitro spiking experiments where natural Cu contamination levels were mimicked. Obvious increasing trends in both root and shoot tissues of maize plantlets growing in Cu-spiked soil (260.26 ± 5.19 mg Cu kg-1) were recorded with proportionally increasing BC application rates. The black tea waste-BC (5%) amendment remarkably reduced the Cu uptake from Cu spiked-soil and showed no phenotypic retardation in maize. Accordingly, it boosted the metabolic and transcriptomic profile owing to up-regulation in the aquaporin and defense genes (PIP1;5 and POD1) by 1.31 and 1.6 fold. The tea-BC application also improved the soil-plant water relations by minimizing cytosolic volume changes between 85 and 90%, increasing chlorophyll intactness (65%) and membrane stability up to 41%. The tea-BC could be a strong agent with potential agronomic benefits in the remediation of the cationic Cu toxicity that occurred in the mining-contaminated agricultural soils.


Assuntos
Cobre/toxicidade , Poluentes do Solo , Zea mays , Carvão Vegetal , Solo , Poluentes do Solo/toxicidade , Chá , Zea mays/efeitos dos fármacos , Zea mays/genética
8.
J Sci Food Agric ; 102(3): 1012-1020, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312861

RESUMO

BACKGROUND: Slow-release fertilizer is widely used in cereal crop production because it is ecofriendly and laborsaving. Effects of different application stages (zero-, three-, and six-leaf stages, denoted as SN0, SN3, and SN6, respectively) of slow-release (N/P2 O5 /K2 O = 225/75/75 kg ha-1 ) fertilizer on physicochemical properties of starch from spring-sown waxy maize were investigated in 2018 and 2019. Application of traditional fertilizer (NCK, compound fertilizer; N/P2 O5 /K2 O = 75/75/75 kg ha-1 ) at sowing time and urea (N = 150 kg ha-1 ) at six-leaf stage was designated as the control. RESULTS: In comparison to the NCK, SN0 reduced grain starch content by 4.9%. Meanwhile, SN3 and SN6 did not affect this parameter. Nevertheless, all treatments, particularly SN6, increased average starch granule size. The slow-release fertilizer reduced proportion of chains with degree of polymerization (DP) > 24. Relative to NCK, SN6 increased starch crystallinity in both years, whereas SN0 and SN3 increased it in 2018 but reduced it in 2019. SN0 reduced peak, trough, and final viscosities, whereas SN3 and SN6 produced similar starch viscosities to those produced by NCK. No fertilizer mode affected gelatinization parameters, but SN6 produced a low retrogradation percentage. In comparison to data for 2018, starch produced in 2019 showed a small granule size, and a high proportion of short amylopectin chains. These properties endowed starch with high viscosity and low retrogradation percentage. CONCLUSION: In spring-sown waxy maize production, applying slow-release fertilizer at the six-leaf stage produced starch with high viscosity and low retrogradation tendency by enlarging granule size, increasing crystallinity, and reducing the proportion of long chains. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Preparações de Ação Retardada/química , Fertilizantes/análise , Amido/química , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Preparações de Ação Retardada/farmacologia , Estações do Ano , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Viscosidade , Zea mays/química , Zea mays/crescimento & desenvolvimento
9.
PLoS One ; 16(12): e0260662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941898

RESUMO

Human population is exceeding beyond the carrying capacity of earth resources and stresses like water shortage faced by the plants is jeopardizing the food security. Current research study was aimed to investigate the potentials of Zn-Aspartate (Zn-Asp), Zn-Sulphate (ZnSO4) and L-Aspartate (L-Asp) to be used as osmolytes and role of various levels of these chemicals in combating drought stress in maize plants in Punjab, Pakistan. Study was performed on two plots corresponding to drought and controlled environments. The lamina of maize plants was sprinkled row wise with various treatments including No spray (NS), water sprinkle (WS), sprinkle with ZnSO4 0.25% and 0.50%, sprinkle with Zn-Asp 0.25% and 0.50% and Foliar sprinkle of L-Asp 0.5% and 1%, respectively. Role of major osmoprotectants and secondary metabolites was analyzed and positive changes were found in total soluble sugars (41.16), flavonoids (5387.74), tocopherol content (9089.18), ascorbic acid (645.27) and anthocyanin (14.84) conc. which assists in mitigating drought menace on maize. Shoot mineral ions (Ca, K, Zn, P, Mg and N) status of water stressed maize plants was also analyzed and it was found that application experimental dose enhanced their availability to crop. Physio-biochemical studies were performed on antioxidants enzymes like superoxide dismutase (SOD), peroxidase (POD), carotenoid content (CC), malondialdehyde, hydrogen peroxide, aspartate and free amino acid contents. The activity of SOD was increased by 28.5% and activity of POD was increased by 33.33% due to foliar applied 0.5% Zn-Asp under drought stress. Photosynthetic pigments (chlorophyll A, B and total chlorophyll content) analysis was also carried out in this study. It was found that conc. of different chlorophylls pigments increased (chl-A: 2.24, chl-B: 25.12, total chl: 24.30) which enhanced photosynthetic activity culminating into better growth and yield). The level of malondialdehyde and hydrogen peroxide decreased by 43.9% and 32.8% respectively on treatment with 0.5% Zn-Asp proving the efficacy of the treatment in drought amelioration. Study reveals that Zn-Asp induced modulations are far better than conventional sulphate salts in mitigating water scarce environment. Current study recommends the use of the Zn-Asp to meet the global food and agricultural challenges as compared to ZnSO4 and L-Asp due to its better drought amelioration properties. This research provides valuable informations which can used for future research and practical use in agriculture fields by indigenous and other people to enhance yield of maize to meet the food necessities of country.


Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Secas , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Compostos de Zinco/farmacologia , Sulfato de Zinco/farmacologia , Antioxidantes/farmacologia , Carboidratos , Caseínas/metabolismo , Peroxidação de Lipídeos , Lipídeos , Fotossíntese , Proteínas de Vegetais Comestíveis/metabolismo , Zea mays/metabolismo
10.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884560

RESUMO

Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA-microorganism-plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg-1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and ß-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.


Assuntos
Bactérias/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Brassica napus/efeitos dos fármacos , Enzimas/metabolismo , Fenóis/toxicidade , Microbiologia do Solo , Solo/química , Zea mays/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Fungos/efeitos dos fármacos
11.
PLoS One ; 16(11): e0254906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843496

RESUMO

Now-a-days, plant-based extracts, as a cheap source of growth activators, are being widely used to treat plants grown under extreme climatic conditions. So, a trial was conducted to assess the response of two maize (Zea mays L.) varieties, Sadaf (drought tolerant) and Sultan (drought sensitive) to foliar-applied sugar beet extract (SBE) under varying water-deficit conditions. Different SBE (control, 1%, 2%, 3% & 4%) levels were used in this study, and plants were exposed to water-deficit [(75% and 60% of field capacity (FC)] and control (100% FC) conditions. It was observed that root and shoot dry weights (growth), total soluble proteins, RWC-relative water contents, total phenolics, chlorophyll pigments and leaf area per plant decreased under different water stress regimes. While, proline, malondialdehyde (MDA), RMP-relative membrane permeability, H2O2-hydrogen peroxide and the activities of antioxidant enzymes [CAT-catalase, POD-peroxidase and SOD-superoxide dismutase] were found to be improved in water stress affected maize plants. Exogenous application of varying levels of SBE ameliorated the negative effects of water-deficit stress by enhancing the growth attributes, photosynthetic pigments, RWC, proline, glycinebetaine (GB), activities of POD and CAT enzymes and levels of total phenolics, whereas it reduced the lipid peroxidation in both maize varieties under varying water stress levels. It was noted that 3% and 4% levels of SBE were more effective than the other levels used in enhancing the growth as well as other characteristics of the maize varieties. Overall, the sugar beet extract proved to be beneficial for improving growth and metabolism of maize plants exposed to water stress.


Assuntos
Beta vulgaris , Betaína , Desidratação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Secas , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502209

RESUMO

The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Furthermore, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings.


Assuntos
Contaminação de Alimentos/análise , Fungicidas Industriais/farmacologia , Fusarium/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Plântula/crescimento & desenvolvimento , Triazóis/farmacologia , Zea mays/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Fusarium/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
13.
Sci Rep ; 11(1): 17196, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433897

RESUMO

Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg-1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg-1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg-1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.


Assuntos
Bacillus pumilus/metabolismo , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Bacillus pumilus/patogenicidade , Biodegradação Ambiental , Cádmio/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Zea mays/microbiologia
14.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445334

RESUMO

The aim of the study was to demonstrate the biostimulating effect of exogenous melatonin (MEL) applied to seeds via hydroconditioning. It was indicated that only well-chosen application technique and MEL dose guarantees success concerning seed germination and young seedlings growth under stress conditions. For maize seed, 50 µM of MEL appeared to be the optimal dose. It improved seed germination and embryonic axes growth especially during chilling stress (5 °C/14 days) and during regeneration after its subsided. Unfortunately, MEL overdosing lowered IAA level in dry seeds and could disrupt the ROS-dependent signal transduction pathways. Very effective antioxidant MEL action was confirmed by low level of protein oxidative damage and smaller quantity of lipid oxidation products in embryonic axes isolated from seeds pre-treated with MEL and then exposed to cold. The stimulatory effects of MEL on antioxidant enzymes: SOD, APX and GSH-PX and on GST-a detoxifying enzyme, was also demonstrated. It was indicated for the first time, that MEL induced defence strategies against stress at the cytological level, as appearing endoreplication in embryonic axes cells even in the seeds germinating under optimal conditions (preventive action), but very intensively in those germinating under chilling stress conditions (intervention action), and after stress removal, to improve regeneration.


Assuntos
Resposta ao Choque Frio , Melatonina/farmacologia , Zea mays , Agricultura/métodos , Antioxidantes/metabolismo , Resposta ao Choque Frio/efeitos dos fármacos , Resposta ao Choque Frio/genética , Endorreduplicação/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445561

RESUMO

Among numerous contaminants, the ubiquitous occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in the environment and their plausible harmful impact on nontarget organisms have made them one of the most important areas of concern in recent years. Crop plants can also potentially be exposed to NSAIDs, since the concentration of these pharmaceuticals is constantly rising in the surface water and soil. Our goal was to evaluate the stress response of two crop plants, maize and tomato, to treatment with selected NSAIDs, naproxen and diclofenac. The focus of the research was on the growth response, photosynthetic efficiency, selected oxidative stress factors (such as the H2O2 level and the rate of lipid peroxidation) as well as the total phenolic content, which represents the non-enzymatic protectants against oxidative stress. The results indicate that susceptibility to the NSAIDs that were tested is dependent on the plant species. A higher sensitivity of tomato manifested in growth inhibition, a decrease in the content of the photosynthetic pigments and a reduction in the maximum quantum efficiency of PSII and the activity of PSII, which was estimated using the Fv/Fm and Fv/F0 ratios. Based on the growth results, it was also possible to reveal that diclofenac had a more toxic effect on tomato. In contrast to tomato, in maize, neither the content of the photosynthetic pigments nor growth appeared to be affected by DFC and NPX. However, both drugs significantly decreased in maize Fv and Fm, which are particularly sensitive to stress. A higher H2O2 concentration accompanied, in most cases, increasing lipid peroxidation, indicating that oxidative stress occurred in response to the selected NSAIDs in the plant species that were studied. The higher phenolic content of the plants after NSAIDs treatment may, in turn, indicate the activation of defense mechanisms in response to the oxidative stress that is triggered by these drugs.


Assuntos
Diclofenaco/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Naproxeno/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Peróxido de Hidrogênio/farmacologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Oxidantes/farmacologia , Fenóis/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
16.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443651

RESUMO

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.


Assuntos
Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Biomassa , Carum/química , Clorofila A/metabolismo , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Fluorescência , Herbicidas/farmacologia , Limoneno/química , Limoneno/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/metabolismo
17.
Plant Cell Physiol ; 62(11): 1770-1785, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453831

RESUMO

Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


Assuntos
Acetamidas/farmacologia , Amaranthus/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Zea mays/metabolismo , Amaranthus/efeitos dos fármacos , Redes e Vias Metabólicas , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/metabolismo , Zea mays/efeitos dos fármacos
18.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361755

RESUMO

Zinc (Zn) is an essential micronutrient for plant growth, and Zn deficiency is a global issue, especially in tropical soils. This study aimed to investigate the effects of humic acid (HA) and the Zn addition (Zn sulfate + HA) on the growth of maize and brachiaria in two contrasting Oxisols. The potential complexation of Zn sulfate by HA was evaluated by Fourier-transform infrared (FTIR) spectroscopy analysis. Zinc content and its availability in solution and the shoot and root biomass of maize and brachiaria were determined. FTIR spectroscopy revealed the complexation of Zn sulfate by HA through its S and C functional groups. In both Oxisols, solution Zn increased due to the combined use of Zn and HA. In a soil type-dependent manner, maize biomass and Zn in its shoots were affected only by the exclusive use of Zn fertilization. In the Yellow Oxisol, brachiaria growth and Zn accumulated in its shoot were positively affected by the combined use of Zn fertilization with HA. In the Oxisol with lower organic matter content, HA can assure adequate supplying of residual Zn, while increasing growth of brachiaria cultivated in sequence to maize.


Assuntos
Brachiaria/efeitos dos fármacos , Substâncias Húmicas/análise , Solo/química , Zea mays/efeitos dos fármacos , Sulfato de Zinco/farmacologia , Brachiaria/crescimento & desenvolvimento , Brasil , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Zea mays/crescimento & desenvolvimento , Sulfato de Zinco/análise , Sulfato de Zinco/química
19.
BMC Plant Biol ; 21(1): 368, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384391

RESUMO

BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 µM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS: The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS: Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 µM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.


Assuntos
Melatonina/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismo , Secas , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Prolina/metabolismo , Espécies Reativas de Oxigênio , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Açúcares/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
20.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299004

RESUMO

Plant production technologies based solely on the improvement of plants themselves face obstacles resulting from the natural limitations of the biological potential of varieties. Therefore, new substances are sought that positively influence the growth and development of plants and increase resistance to various biotic and abiotic stresses, which also translates into an increase in obtained yields. The exogenous application of various phytoprotectants shows great promise in terms of cost effectiveness compared to traditional breeding methods or transgenic approaches in relation to increasing plant tolerance to abiotic stresses. Quercetin is a strong antioxidant among phenolic compounds, and it plays a physiological and biochemical role in plants. As such, the aim of this research was to assess the effect of an aqueous solution of a quercetin derivative with potassium, applied in various concentrations (0.5%, 1.0%, 3.0% and 5.0%), on the efficiency of the photosynthetic apparatus and biochemical properties of maize. Among the tested variants, compared to the control, the most stimulating effect on the course of physiological processes (PN, gs, ci, CCI, Fv/Fm, Fv/F0, PI) in maize leaves was found in 3.0 and 5.0% aqueous solutions of the quercetin derivative. The highest total antioxidant capacity and total content of polyphenolic compounds were found for plants sprayed with 5.0% quercetin derivative solution; therefore, in this study, the optimal concentration could not be clearly selected.


Assuntos
Antioxidantes/farmacologia , Melhoramento Vegetal/métodos , Potássio/química , Quercetina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Antioxidantes/administração & dosagem , Antioxidantes/química , Clorofila/análise , Clorofila/química , Fluorescência , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Quercetina/administração & dosagem , Quercetina/análogos & derivados , Quercetina/química , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...